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We recently reported the identification of a series of
3-(phenylureido)-1,5-benzodiazepine CCK-A agonists.1
These compounds were the first reported nonpeptidyl
CCK-A agonists. Unfortunately, they lacked binding
selectivity for CCK-A vs CCK-B receptors and were not
orally active as satiety agents in rodent feeding models.
Subsequent systematic modification of the C-3 ureido
substituent in this series led to the development of a
CCK-A binding-selective partial agonist 1 (Figure 1).2
While amide 1 showed CCK-A agonist activity in a
mouse gallbladder-emptying assay following oral dosing,
it was also not orally active in a rat feeding model.
Reasoning that the partial agonist activity of 1 may be
connected to its inability to inhibit feeding, studies were
initiated to identify binding-selective CCK-A full ago-
nists. This paper reports the biological profile of a series
of isosteric replacements for the C-3 phenyl amide
moiety.
Chemistry. Compounds 2-10 were synthesized

using 1,5-benzodiazepine 11 (R ) H or OCH3) as a key
intermediate (Scheme 1). Alkylation of N-phenyl-1,2-
phenylenediamine with the appropriate bromoaceta-
mide followed by condensation with malonyl dichloride
afforded 11 in rapid fashion. The C-3 substituent was
introduced via deprotonation using KN(TMS)2 or NaN-
(TMS)2 as the base followed by addition of the requisite
alkyl halide. Deprotection, if necessary, was carried out
under standard conditions. Formation of the C-3 qua-
ternary analogs was achieved by a second deprotona-
tion/alkylation sequence with the appropriate alkyl
halide, followed by deprotection if necessary. The
various alkyl halides used in construction of 2-10 were
synthesized using established literature methods.
Results and Discussion. The strategy for modifica-

tion of the C-3 pharmacophore was suggested by study-
ing the structure of the selective CCK-A antagonist
asperlicin,3 which has been used by several groups as a

template for the development of subtype-selective CCK
antagonists.4 Pioneering work at Merck resulted in a
series of 1,4-benzodiazepine CCK-A selective antago-
nists,5,6 suggesting that the benzodiazepine substructure
provides a proper structural motif for interaction with
the CCK receptor. Researchers at both Merck5 and
Lilly4d,e also demonstrated that the 3-indolinylmethyl
group embedded within the structure of asperlicin was
an important element for bioactivity. In addition, this
moiety is structurally similar to L-tryptophan, a key
amino acid required for agonist activity in the peptide
sequence of CCK and various peptidomimetics of CCK.7
Compounds 2-10 were evaluated for in vitro func-

tional efficacy in inducing contraction of isolated guinea
pig gallbladder (Table 1).8 Compounds were tested at
30 µM concentration and their efficacy normalized to
CCK-8 at 1 µM. The contractile activity of all com-
pounds was reversed with the CCK-A selective antago-
nist MK-329.5 To investigate the viability of our
strategy in the 1,5-benzodiazepine CCK-A agonist se-
ries, the phenyl amide moiety in 1 was replaced by a
3-indolylmethyl group. This modification maintains
agonist activity, with the 3-indolyl analog 2 having
equal efficacy to that of amide 1 (Table 1). Previous
work1 had demonstrated that replacement of the p-
hydrogen in the anilide “trigger” portion of the molecule
with a methoxy group provided a modest increase in
efficacy. However, in the indole series this substitution
led to a small decrease in efficacy (2 vs 3, Table 1).
Removal of the C-3 methyl substituent provided a slight
increase in efficacy (3 vs 4). Efforts were then directed
toward replacement of the indole moiety. The 3-inda-
zole moiety was initially chosen on the basis of its
capability to function as an indole bioisostere in other
systems.9 Replacement of the indole group with a
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Scheme 1a

a Reagents: (i) 2-bromo-N-isopropyl-N-phenylacetamide (R1 )
H) or 2-bromo-N-isopropyl-N-(4-methoxy)phenylacetamide (R1 )
OCH3), K2CO3, DMF, 18 h; (ii) malonyl dichloride, THF, 0 °C to
room temperature, 18 h; (iii) NaN(TMS)2 or KN(TMS)2, room
temperature, DMF, 15 min; Ar-CH2-Br, DMF, room temperature,
2-5 h; (iv) KN(TMS)2, DMF, 0 °C, 15 min; MeI, DMF, room
temperature, 3 h; (v) deprotection (if necessary).
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3-indazolyl moiety tended to provide an increase in
efficacy (3 vs 6, 4 vs 7, Table 1). Notably, indazole 7
was a full agonist, being as efficacious as CCK-8 in this
assay. In parallel to the indole series, removal of the
p-methoxy group resulted in a slight decrease in efficacy
(7 vs 8). Methylation of the indazole N-1 nitrogen
decreased efficacy slightly (7 vs 9), while N-benzyl
analog 10 had substantially reduced agonist activity.
Importantly, compounds 2-10 also displayed submi-
cromolar potencies ranging from 20 to 500 nM in the
guinea pig gallbladder assay (Table 1). Interpretations
on potency differences within this series are precluded
due to the lack of a significant number of full dose-
response experiments for most entries.
Receptor binding affinities for compounds 1-10 were

measured on membrane preparations from CHO-K1 cell
lines stably transfected with cDNA from either human
CCK-A10 or CCK-B11 receptors. IC50 values were de-
termined using competitive radioligand binding with
labeled CCK-8. Replacement of the N-phenylamide
with the 3-indazolyl moiety resulted in a 5-fold drop in
selectivity (1 vs 5, Table 1). Removal of the C-3 methyl
group resulted in a decrease in A/B selectivity in both
the indole and indazole series (3 vs 4, 6 vs 7). Previous
work1 had shown that incorporation of a p-methoxy
group in the anilide “trigger” portion of the molecule
provided a slight increase in A/B binding selectivity.
Incorporation of this moiety in the indole series led to
increased affinity for the CCK-A receptor (2 vs 3) and
provided a substantial improvement in the indazole
series (5 vs 6, 8 vs 7), with compound 6 displaying
>5000-fold selectivity for the CCK-A receptor. In

general, optimal A/B selectivity in this series is achieved
by incorporation of both a p-methoxy group in the
anilide trigger and a methyl group at C-3 of the 1,5-
benzodiazepine ring.
Indazole 7 was chosen for in vivo evaluation based

on in vitro efficacy, as it was the only compound which
demonstrated full agonist activity and moderate CCK-A
binding selectivity. Compound 7 was tested in a mouse
gallbladder-emptying assay1 to examine whether the
increased in vitro efficacy translated to increased CCK-A
agonist activity in vivo. This assay measures the extent
of CCK-mediated gallbladder emptying 30 min after
compound is administered12 and provides a direct
physiological reading of peripheral CCK-A agonist
activity. Indazole 7 was both more potent and more
efficacious than amide 1 in this assay (Table 2), showing
efficacy equal to that of CCK-8 when administered
intraperitoneally. This increase in bioactivity also held
true upon oral administration, with 7 demonstrating full
agonist activity and a substantial improvement in
potency over amide 1.
Having identified 7 as an orally active full agonist in

vivo in a mouse gallbladder emptying assay, the satiety
effects of this compound were evaluated in a rat feeding
model. The in vivo effect of 7 on feeding was assessed
in Long-Evans rats conditioned to a liquid diet and
fasted for 2 h prior to oral administration of drug. Drug
administration was followed immediately by a saline
oral preload. Food access was provided 20 min later,
and food intake was measured at 30, 90, and 180 min.
d-Amphetamine was used as a positive control. This
model provides measurement of the anorectic activity

Figure 1.

Table 1. In Vitro Activity of 1,5-Benzodiazepine CCK-A Agonists

structuresa functional assayb binding assayc

no. R1 R2 X Y ED50 (nM) % max CCK-A (pIC50) CCK-B (pIC50) A/B sel

CCK-8 - - - - 2 ( 1 (5) 100 8.88 ( 0.22 (8) 9.46 ( 0.04 (8) 0.3
1 - - - - 190 ( 20 (4) 80 (4) 7.12 ( 0.02 (3) 5.08 ( 0.04 (3) 110
2 H CH3 CH NH 470 (1) 80 (1) 6.97 ( 0.09 (3) - -
3 OCH3 CH3 CH NH 530 (1) 60 (3) 8.08 ( 0.24 (4) 4.76 ( 0.26 (5) 2090
4 OCH3 H CH NH 340 (1) 70 (4) 7.96 ( 0.14 (3) 5.28 ( 0.08 (3) 480
5 H CH3 N NH 20 (1) 80 (2) 6.92 ( 0.12 (3) 5.58 ( 0.05 (3) 20
6 OCH3 CH3 N NH 320 (1) 80 (3) 7.88 ( 0.02 (3) 4.16 ( 0.23 (3) 5100
7 OCH3 H N NH 109 ( 60 (4) 100 (6) 7.64 ( 0.12 (5) 6.00 ( 0.23 (4) 50
8 H H N NH 140 (1) 90 (2) 7.06 ( 0.05 (3) 6.75 ( 0.10 (3) 2
9 OCH3 H N NCH3 70 ( 10 (2) 90 (3) 7.37 ( 0.43 (3) 5.62 ( 0.20 (3) 60
10 OCH3 H N NCH2Ph 340 (1) 40 (2) 6.51 ( 0.16 (5) 4.00 ( 0.0 (2) 320
a Figure 1. b Functional activity in the isolated guinea pig gallblader following incubation with the test ligand for 30 min at 37 °C;

ED50, concentration at which 50% of the maximal contraction was observed ( SE (number of determinations); % max (number of
determinations), relative efficacy as determined by the maximal contraction observed at 30 µM standardized to CCK-8 (1 µM) ) 100%,
all values (5%. Reversal of contraction with MK-329 (1 µM) was used to verify a CCK-A receptor mediated response. c Binding affinity
for human CCK-A and CCK-B receptors; pIC50, -log of the concentration that displaced 50% of [125I]Bolton-Hunter CCK-8 frommembrane
preparations isolated from CHO-K1 cells stably transfected with cDNA of human CCK-A and CCK-B receptors ( SE (number of
determinations); -, not determined; A/B sel, CCK-A receptor selectivity calculated from IC50 (B)/IC50 (A).
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of CCK-A agonists, taking into account both vagally-
mediated behavioral satiety effects in combination with
effects through inhibition of gastric emptying.13 The
results (Figure 2) demonstrate indazole 7 was effective
at reducing food intake to 40% of vehicle controls when
given orally at a dose of 10 µmol/kg, with statistically
significant reduction in food intake occurring at a dose
of 1 µmol/kg after 180 min. At the higher dose an effect
on food intake could be seen up to 24 h after dosing (data
not shown). The chronic effectiveness of compound 7
in this model has not been evaluated.
Conclusion. Previous work1,2 has identified 1,5-

benzodiazepine CCK-A agonists whose efficacy and
binding selectivity are dependent on the structure of the
C-3 pharmacophore. This report illustrates that re-
placement of the C-3 urea or amide pharmacophore with
a 3-indolylmethyl group maintains agonist activity.

Subsequent structure-activity studies have identified
indazole 7 as a binding-selective CCK-A full agonist
which is orally active in a mouse gallbladder emptying
assay. In addition, compound 7 is the first CCK-A
agonist which has demonstrated suppression of food
intake when given orally in a rat feeding model. This
compound, GW 5823, shows promise as an orally active
satiety agent which may be useful for the treatment of
obesity.
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the pretreatment day. *p < 0.05 using Dunnett’s multiple
comparison test.
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